Материаловедение для студентов заочной формы обучения

Рабочая программа, методические указания и задания на контрольную работу

[Введение]  [Общие методические указания] 

Выполнять работу необходимо строго по варианту, номер которого совпадает с суммой двух последних цифр номера зачетной книжки (например: две последние цифры номера 35, следовательно, номер варианта 3 + 5 = 8). Если номер зачетки оканчивается двумя нулями, студент выполняет десятый вариант.

Задания на контрольную работу 


Дисциплина включает следующие разделы:
  1. Строение металлов
  2. Теория сплавов
  3. Пластическая деформация, возврат и рекристаллизация
  4. Железоуглеродистые сплавы
  5. Основы термической обработки (теория и технология)
  6. Методы упрочнения поверхности
  7. Конструкционные стали
  8. Инструментальные стали и сплавы
  9. Сплавы цветных металлов
  10. Неметаллические материалы
  11. Экономическая эффективность применения различных материалов

Введение

Выпуск современных машин, производство машиностроительных конструкций, специальных приборов, металлорежущих и другого назначения инструментов невозможен без знания традиционных и освоения новых, наиболее экономичных материалов, без использования новейших методов упрочнения.

В зависимости от назначения деталей машин, конструкций, режущих или других типов инструментов к материалам, используемым для их изготовления, предъявляются различные требования.

Некоторые из них должны отличаться наиболее высокой твердостью, другие - высокой прочностью, либо пластичностью, либо специальными физическими или химическими свойствами.

Те или иные свойства обеспечиваются природой, химическим составом и внутренним строением материалов. Материаловедение как наука как раз и занимается изучением связей между химическим составом и строением, между обработкой и строением; между строением, химическим составом и свойствами.

Изучая материаловедение, студенты знакомятся с основами строения материалов, их поведением в процессе пластической деформации (обработки давлением), термической, термомеханической, химико-термической и других обработок; с основными факторами, позволяющими формировать структуру; со свойствами и назначением промышленных материалов, от правильного использования которых зависит долговечность и надежность машин, конструкций, инструментов.

Материаловедение является важной инженерной дисциплиной, информация которой широко используется при курсовом и дипломном проектировании. Основной целью изучения материаловедения является приобретение знаний для наиболее эффективного и рационального использования материалов в технике.

Общие методические указания по дисциплине

Как работать с учебной литературой?

Для начала ознакомьтесь с введением, бегло просмотрите учебник (учебное пособие), чтобы составить о нём первое впечатление. Затем приступайте к вдумчивой, детальной, последовательной проработке каждого раздела.

Читать следует в строгой последовательности, указанной в рабочей программе. Прочитанный материал рекомендуем воспроизводить по памяти. Не следует смущаться, если не все становится понятным сразу. Читайте повторно. Читая, старайтесь не только запоминать содержание изучаемого материала, но и составлять краткий конспект, в который вносите основные положения изучаемого раздела, сопровождая их при необходимости графическими иллюстрациями. На полях конспекта отмечайте вопросы, по которым хотели бы получить консультации у преподавателя. Не следует переходить к работе над последующими разделами, не изучив предыдущие. Старайтесь постоянно перечитывать конспект.

Помните, личный опыт вырабатывает навыки и умение работать с учебной литературой.

Наш опыт показывает, что наиболее трудными разделами дисциплины являются разделы, посвященные теории сплавов и вопросам термической обработки. Освоению материала способствует и выполнение контрольной работы.

Правила выполнения и оформления контрольной работы

Задания включают вопросы и задачи по основным разделам курса. К выполнению работы не следует приступать, не проработав соответствующего материала по учебнику. Не пользуйтесь устаревшей литературой, в которой могут содержаться ошибочные или устаревшие взгляды, понятия, термины и обозначения.

Вариант контрольной работы

Выполнять работу необходимо строго по варианту, номер которого совпадает с суммой двух последних цифр номера зачетной книжки (например: две последние цифры номера 35, следовательно, номер варианта 3 + 5 = 8). Если номер зачетки оканчивается двумя нулями, студент выполняет десятый вариант.

Титульный лист работы оформляется в соответствии с установленными требованиями и должен включать: наименование контрольной работы (по материаловедению), Ф.И.О. студента, вариант задания, учебный шифр (номер зачетной книжки), дату отсылки (подачи) работы в университет, свой адрес, подпись.

После титульного листа идет страница с перечислением вопросов задания.

Очередность выполнения заданий - в порядке их следования в заданном варианте. При оформлении работы обязательна ссылка на используемую литературу или образовательные ресурсы Интернета.

В конце работы приведите список использованной литературы. При использовании образовательных ресурсов Интернета в списке литературы указывать соответствующие образовательные сайты, с которых взята используемая в работе информация.

Выполненная работа высылается (передается) на рецензирование. Работа, содержащая неправильные ответы, ответы не на все

вопросы варианта или не своего варианта, не засчитывается. Не засчитанная работа выполняется заново. В работе с замечаниями рецензента исправления (письменные ответы) представлять на новых чистых листах в конце работы (вносить исправления в первоначальный текст работы не допускается). Исправленная работа повторно направляется на рецензирование. Зачтенная работа не возвращается студенту и выдается на экзамене для подготовки к его сдаче.

[В начало]

1. Строение металлов и кристаллизация.

Типы кристаллических решеток металлов и их основные характеристики. Элементы кристаллографии. Понятие о плоскости скольжения. Полиморфизм. Анизотропия кристаллов. Теоретическая и практическая прочность. Дефекты кристаллического строения, их влияние на свойства. Микроструктура. Строение границ зерен и субзерен. Диффузия и самодиффузия. Плавление и кристаллизация металлов и сплавов. Кинетика и параметры кристаллизации. Величина зерен. Модифицирование.

Литература: [1, с. 11-36].

Методические указания.

Обратите внимание на металлический тип связи. Выясните причину огромного различия между теоретической и практической (реальной) прочностью металлов. Разберитесь в видах несовершенств кристаллического строения реальных металлов и особенно дислокаций, в причинах легкого перемещения дислокаций в кристаллической решетке и в их влиянии на механические свойства.

При изучении процесса кристаллизации необходимо уяснить зависимость параметров кристаллизации от степени переохлаждения и их влияние на формирование структуры литого металла, возможность искусственного воздействия на строение путем модифицирования. Обратите внимание на образование дендритной структуры.

[В начало]

2. Теория сплавов

Определение терминов: сплав, компонент, фаза, твердые растворы, химические соединения, эвтектические и эвтектоидные смеси кристаллов.

Диаграммы состояния двойных сплавов:

Правило фаз (Закон Гиббса). Правило "отрезков".

Ликвация. Виды ликвации и методы ее устранения. Связь между химическим составом, структурой и свойствами (правило Курнакова).

Литература: [1, с. 37-65].

Методические указания

По виду диаграммы состояния научитесь определять характер взаимодействия компонентов в сплавах в твердом состоянии, агрегатные состояния любых сплавов и превращения, протекающие в них, в зависимости от химического состава и температуры (т.е. во всех областях диаграммы). При изучении диаграмм практикуйтесь в построении кривых охлаждения и нагревания с указанием на кривых в точках перегибов, а также между этими точками (температурами) структурных составляющих и протекающих превращений.

Научитесь применять правило "отрезков". Выясните, в чём состоит отличие эвтектического и эвтектоидного превращений, какая разница между эвтектикой и эвтектоидом.

[В начало]

3. Пластическая деформация, возврат и рекристаллизация

Пластическая деформация. Степень деформации. Механизм пластической деформации. Пластическая деформация в монокристаллах (зернах) и поликристаллического тела. Источники Франка-Рида. Влияние холодной пластической деформации на микроструктуру и свойства металлов и сплавов. Наклеп. Текстура деформации. Причины деформационного упрочнения. Практическое применение наклепа.

Атмосферы на дислокациях и их влияние на прочность.

Возврат. Первичная, собирательная и вторичная рекристаллизации. Влияние температуры тепловой обработки (отжига) на микроструктуру и механические свойства наклепанного металла и сплава. Назначение рекристаллизационного отжига. Факторы, влияющие на температуру рекристаллизации и величину зерна после рекристаллизации. Критическая степень деформации. Холодная и горячая пластическая деформации. Процессы, протекающие при этих видах деформации. Различие в микроструктуре и свойствах.

Литература: [1, с. 68-86; 249-252; 110-117].

Методические указания

Особое внимание уделите дислокационному механизму пластической деформации скольжением в монокристаллах и в поликристаллическом металле. Как в поликристаллическом металле распространяется деформация от зерна к зерну. Разберитесь в причинах легкоподвижности дислокаций в кристаллической решетке, в плоскостях легчайшего скольжения. Подробнее изучите причины деформационного упрочнения металлов, вклад атмосфер на дислокациях, дислокационных конфигураций, включений фаз другой природы и других препятствий в упрочнение.

Понимание процессов, происходящих при холодной пластической деформации и при нагреве деформированного металла, позволяет разделить пластическую деформацию (обработку давлением) на холодную и горячую.

[В начало]

4. Железоуглеродистые сплавы

Компоненты и их свойства. Диаграмма состояния железо-цементит. Подразделение сплавов на стали и чугуны. Подразделение сталей и чугунов по микроструктуре.

Сталь. Влияние углерода на микроструктуру и механические свойства медленно охлажденных сталей. Влияние серы и фосфора. Характеристика и маркировка углеродистых сталей.

Чугун. Производство белых, обычных серых, ковких и высокопрочных чугунов. Их микроструктура и формы графита. Маркировка чугунов. Влияние углерода, кремния и скорости охлаждения на структуру чугунов. Влияние структурных составляющих на механические свойства серых чугунов.

Литература: [1, с. 118-134; 256-259; 281-283; 144-145].

Методические указания

Студент должен уметь на память вычертить диаграмму состояния железо-цементит, запомнить, что железоуглеродистые сплавы принципиально различаются по микроструктуре и свойствам.

Другие рекомендации к изучению диаграммы железо-цементит смотрите в методических указаниях к теории сплавов.

Как классифицируют стали и белые чугуны по микроструктуре.

При изучении чугунов сравните механические свойства серого, ковкого и высокопрочного чугунов.

[В начало]

5. Теория и технология термической обработки стали

Виды термической обработки. Рост зерна аустенита при нагреве, перегрев и пережог.

Изотермические превращения переохлажденного аустенита (изотермическая диаграмма). Продукты распада переохлажденного аустенита (перлит, сорбит, тростит, бейнит, мартенсит), их строение и свойства. Влияние углерода на твердость мартенсита и на температуру начала и конца мартенситного превращения. Критическая скорость охлаждения (закалки) и факторы, влияющие на нее.

Превращения переохлажденного аустенита при непрерывном охлаждении с различными скоростями (термокинетическая диаграмма).

Отжиг первого рода. Отжиг второго рода (отжиг с фазовой перекристаллизацией). Полный и неполный отжиг. Изотермический отжиг.

Сфероидизирующие отжиги (отжиги на зернистый цементит).

Нормализация стали.

Закалка стали: полная и неполная. Закалочные среды и требования, предъявляемые к ним. Способы закалки: закалка при непрерывном охлаждении, прерывистая, ступенчатая, изотермическая.

Закаливаемость, прокаливаемость сталей и факторы, влияющие на них. Методы определения.

Отпуск закаленных сталей. Превращения при отпуске. Виды и назначение отпусков.

Влияние закалки и отпуска на механические свойства сталей.

Термическое улучшение стали.

Термомеханическая обработка сталей.

Литература: [1, с. 156-249].

Методические указания

Какое значение имеет склонность аустенитных зерен к росту в практике. Уясните разницу между перегревом и пережогом.

При изучении превращений переохлажденного аустенита в изотермических условиях и при непрерывном охлаждении обратите внимание на кинетику его превращения в зависимости от температуры переохлаждения, на природу (строение) и механические свойства продуктов превращения аустенита.

Уясните физическую сущность процессов, происходящих при той или иной разновидности отжига и закалки. Особое внимание обратите на режимы термических обработок (время и температуру нагрева, длительность выдержки при этой температуре, условия охлаждения) и на факторы, влияющие на них; на причины возникновения термических напряжений, деформацию деталей и на приемы, способствующие снижению их уровня.

Детально изучите процессы, протекающие в закаленных сталях при нагреве на различные температуры (начиная от комнатной) для отпуска.

Обратите внимание на сущность и особенности термомеханических обработок.

Во всех случаях анализируйте влияние изучаемых процессов на строение и механические свойства.

[В начало]

6. Методы упрочнения поверхности

Упрочнение наклепом. Методы упрочнения.

Закалка с индукционного нагрева (закалка ТВЧ) и другие виды. Стали, применяемые для поверхностной закалки. Особенности строения микроструктуры, уровень свойств.

Химико-термическая обработка (ХТО) сталей (цементация, азотирование и совмещение обработки). Термическая обработка цементуемых и азотируемых деталей. Свойства деталей после ХТО. Назначение и область применения ХТО.

Литература: [1, с. 228-252].

Методические указания

В каких случаях прибегают к поверхностному упрочнению деталей?

Рассмотрите сущность и назначение поверхностного наклепа, его влияние на эксплуатационные свойства деталей машин и станков. Какие методы применяются в промышленности для поверхностного наклепа деталей?

Обратите внимание на то, что при закалке с индукционного нагрева уровень механических свойств выше, чем при закалке с печного нагрева. Уясните причину этого.

При изучении основ химико-термических обработок (ХТО) разберитесь в сущности процессов, в технологии проведения каждого вида ХТО, применяемых режимов и типа сталей. Какими свойствами должны обладать поверхностный слой и сердцевина деталей в зависимости от условий эксплуатации для объяснения нормальной (надежной) работы? В каких случаях прибегают к поверхностному упрочнению наклепом, закалкой ТВЧ, цементацией, азотированием.

[В начало]

7. Конструкционные углеродистые и легированные стали

Цементуемые углеродистые и легированные стали. Назначение легирования. Улучшаемые стали и цель легирования. Пружинные, шарикоподшипниковые и машиностроительные стали. Теплоустойчивые, износостойкие, коррозионно-стойкие, жаростойкие и жаропрочные стали.

Высокопрочные и мартенситостареющие конструкционные стали.

Антифрикционные и конструкционные порошковые материалы. Композиционные материалы.

Литература: [1, с. 252-312; 422-431 ].

Методические указания

Разберитесь, стали какого типа используются при изготовлении деталей различного назначения, подвергающиеся цементации,

улучшению, в качестве рессорно-пружинного материала. Что понимают под теплостойкостью, коррозионной стойкостью, жаростойкостью, жаропрочностью? В чем сущность ползучести? Какими факторами эти свойства обеспечиваются? Уровень свойств разных металлических материалов.

[В начало]

8. Инструментальные углеродистые и легированные стали и сплавы

Классификация и маркировка сталей. Требования, предъявляемые к инструментальным материалам. Инструментальные стали пониженной и повышенной (сложнолегированные) прокаливаемости. Быстрорежущие стали. Твердые сплавы. Материалы, применяемые для режущего, штампового и измерительного инструмента. Стали и сплавы для инструментов холодного и горячего деформирования. Стали повышенной разгаростойкости. Получение инструмента методом порошковой металлургии.

Литература: [1, с. 349-366].

Методические указания

Рассмотрите требования, предъявляемые к инструментальным материалам, их основные эксплуатационные свойства. Особое внимание уделите быстрорежущим сталям и твердым сплавам. Уясните причины их высокой теплостойкости (красностойкости), обратите внимание на особенности термической обработки быстрорежущих сталей. Каким образом можно повысить теплостойкость инструментов?

Изучите особенность требований к материалам, применяемых при изготовлении инструментов, предназначенных для деформирования (обработки) металлов в холодном и горячем состоянии.

Обратите внимание на требования к материалам для измерительных инструментов и на особенности их термической обработки.

[В начало]

9. Цветные металлы и сплавы

Алюминий, медь, титан и их сплавы (литые, деформируемые, порошковые). Термическая обработка. Механические и технологические свойства. Подшипниковые сплавы. Области применения.

Литература: [1, с. 378-401, 406-422].

Методические указания

Коротко ознакомьтесь с классификацией и основными видами цветных сплавов, с особенностями их термической обработки (закалкой и старением), с принципами маркировки.

[В начало]

10. Неметаллические и композиционные материалы

Полимерные материалы (термопласты, эластотермопласты, реактопласты). Свойство и область применения пластиков и реактопластов.

Композиционные материалы. Классификация. Понятие матрицы и наполнителя. Уровень свойств. Область применения.

Литература: [1, с. 434 - 481].

[В начало]

11. Экономическая эффективность применения различных материалов

Сравнительные данные стоимости углеродистых, легированных сталей, цветных металлов и их сплавов; сплавов, полученных методом порошковой металлургии. Себестоимость различных операций термической, химико-термической обработок, пластической деформации и других методов упрочнения материалов. Рациональные области применения металлических и неметаллических материалов

Литература: [2, с. 18; 3, с. 374-375]

[В начало]

Учебная литература

1. Лахтин Ю.М., Леонтьева В.П. Материаловедение: Учебник для вузов.-3-е изд. - М.: Машиностроение, 1990. - 528 с.

2. Гуляев А.П. Металловедение: Учебник для вузов. - 6-е изд. - М.: Металлургия, 1986. - 544 с.

3. Материаловедение: Учебник для вузов /Под общ. ред. Б.Н. Арзомасова - 2-е изд. - М.: Машиностроение, 1986. - 384 с.

4. Лахтин Ю.М. Металловедение и термическая обработка металлов: Учебник для вузов. - 4-е изд. - М.: Металлургия, 1993. - 448 с